来源:程军康|编辑日期:2009-11-06 10:24:56|点击数: |发布:55
高精度加法
所谓的高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个200位的数的和。这时,就要用到高精度算法了。在这里,我们先讨论高精度加法。高精度运算主要解决以下三个问题:
基本方法(如果你已经会了,那就看看优化后的方法)
1、加数、减数、运算结果的输入和存储
运算因子超出了整型、实型能表示的范围,肯定不能直接用一个数的形式来表示。在Pascal中,能表示多个数的数据类型有两种:数组和字符串。
(1)数组:每个数组元素存储1位(在优化时,这里是一个重点!),有多少位就需要多少个数组元素;
用数组表示数的优点:每一位都是数的形式,可以直接加减;运算时非常方便
用数组表示数的缺点:数组不能直接输入;输入时每两位数之间必须有分隔符,不符合数值的输入习惯;
(2)字符串:字符串的最大长度是255,可以表示255位。
用字符串表示数的优点:能直接输入输出,输入时,每两位数之间不必分隔符,符合数值的输入习惯;
用字符串表示数的缺点:字符串中的每一位是一个字符,不能直接进行运算,必须先将它转化为数值再进行运算;运算时非常不方便;
(3)因此,综合以上所述,对上面两种数据结构取长补短:用字符串读入数据,用数组存储数据:
var s1,s2:string;
a,b,c:array [1..260] of integer;
i,l,k1,k2:integer;
begin
write('input s1:');readln(s1);
write('input s2:');readln(s2);
{————读入两个数s1,s2,都是字符串类型}
l:=length(s1);{求出s1的长度,也即s1的位数;有关字符串的知识。}
k1:=260;
for i:=l downto 1 do
begin
a[k1]:=ord(s1[i])-48;{将字符转成数值}
k1:=k1-1;
end;
k1:=k1+1;
&nbs
上一篇:
下一篇: